Serveur d'exploration sur les interactions arbre microorganisme

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity.

Identifieur interne : 000288 ( Main/Exploration ); précédent : 000287; suivant : 000289

Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity.

Auteurs : G A Strobel [États-Unis] ; W M Hess

Source :

RBID : pubmed:9263641

Descripteurs français

English descriptors

Abstract

BACKGROUND

Yew species (Taxus spp.) throughout the world are hosts to hundreds, or perhaps thousands, of endophytic organisms. Most commonly, these organisms are fungi, living in a commensal or a symbiotic relationship with their host plant, so the plants exhibit little or no outward evidence that they are supporting these microorganisms. Little is known about any of the biochemical mechanisms that mediate the interactions between the yew host and its associated microbes. We feel that such information may not only contribute to our understanding of endophyte-tree biology, but also may provide novel pharmaceutical leads, because some of the compounds produced by these endophytes have demonstrated pharmacological activities.

RESULTS

Acremonium sp. was isolated as an endophytic fungus of the European yew, Taxus baccata. Entry of Acremonium sp. into the plant may proceed via invasion of natural openings such as stomata. The relationship between Acremonium sp. and T. baccata may be a symbiotic one, because no symptoms are seen when Taxus media p.v. Hicksii is inoculated with this fungus. In culture, the fungus makes leucinostatin A, a peptide with phytotoxic, anticancer and antifungal properties. Although this peptide causes necrotic symptoms in many non-host plants and other cell types, it causes no visible symptoms in the host plant. T. baccata and several other plants have a UDP glucose; leucinostatin A glucosyl transferase that catalyzes the production of leucinostatin A beta di-O-glucoside from leucinostatin A. This glucoside, also made by the fungus, has a lower bioactivity against plants, fungi and a breast cancer cell line, BT-20, than leucinostatin A.

CONCLUSIONS

Leucinostatin A may be one of several potentially toxic peptides produced by Acremonium sp. that contribute to the defense of the host, thereby preserving the fungus' own biological niche. The host plant is relatively immune to leucinostatin A because it has an enzyme which transfers two glycosyl residues to leucinostatin A, markedly reducing the peptide's bioactivity. Our results suggest that glucosylation reactions may play a more general role in plant defenses, especially against toxin-mediated disease development.


DOI: 10.1016/s1074-5521(97)90325-2
PubMed: 9263641


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity.</title>
<author>
<name sortKey="Strobel, G A" sort="Strobel, G A" uniqKey="Strobel G" first="G A" last="Strobel">G A Strobel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Montana State University, Bozeman 59717, USA. uplga@gemini.oscs.montana.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Montana State University, Bozeman 59717</wicri:regionArea>
<wicri:noRegion>Bozeman 59717</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hess, W M" sort="Hess, W M" uniqKey="Hess W" first="W M" last="Hess">W M Hess</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1997">1997</date>
<idno type="RBID">pubmed:9263641</idno>
<idno type="pmid">9263641</idno>
<idno type="doi">10.1016/s1074-5521(97)90325-2</idno>
<idno type="wicri:Area/Main/Corpus">000289</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000289</idno>
<idno type="wicri:Area/Main/Curation">000289</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000289</idno>
<idno type="wicri:Area/Main/Exploration">000289</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity.</title>
<author>
<name sortKey="Strobel, G A" sort="Strobel, G A" uniqKey="Strobel G" first="G A" last="Strobel">G A Strobel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Pathology, Montana State University, Bozeman 59717, USA. uplga@gemini.oscs.montana.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Pathology, Montana State University, Bozeman 59717</wicri:regionArea>
<wicri:noRegion>Bozeman 59717</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hess, W M" sort="Hess, W M" uniqKey="Hess W" first="W M" last="Hess">W M Hess</name>
</author>
</analytic>
<series>
<title level="j">Chemistry & biology</title>
<idno type="ISSN">1074-5521</idno>
<imprint>
<date when="1997" type="published">1997</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acremonium (metabolism)</term>
<term>Acremonium (ultrastructure)</term>
<term>Anti-Bacterial Agents (metabolism)</term>
<term>Anti-Bacterial Agents (toxicity)</term>
<term>Antimicrobial Cationic Peptides (MeSH)</term>
<term>Glucosides (biosynthesis)</term>
<term>Glycosylation (MeSH)</term>
<term>Host-Parasite Interactions (MeSH)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Microscopy, Electron, Scanning (MeSH)</term>
<term>Peptides (MeSH)</term>
<term>Trees (microbiology)</term>
<term>Trees (ultrastructure)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acremonium (métabolisme)</term>
<term>Acremonium (ultrastructure)</term>
<term>Antibactériens (métabolisme)</term>
<term>Antibactériens (toxicité)</term>
<term>Arbres (microbiologie)</term>
<term>Arbres (ultrastructure)</term>
<term>Glucosides (biosynthèse)</term>
<term>Glycosylation (MeSH)</term>
<term>Interactions hôte-parasite (MeSH)</term>
<term>Microscopie électronique à balayage (MeSH)</term>
<term>Peptides (MeSH)</term>
<term>Peptides antimicrobiens cationiques (MeSH)</term>
<term>Spectroscopie par résonance magnétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Glucosides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Anti-Bacterial Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Glucosides</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Acremonium</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acremonium</term>
<term>Antibactériens</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Anti-Bacterial Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Antibactériens</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Acremonium</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Antimicrobial Cationic Peptides</term>
<term>Glycosylation</term>
<term>Host-Parasite Interactions</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Microscopy, Electron, Scanning</term>
<term>Peptides</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="fr">
<term>Acremonium</term>
<term>Arbres</term>
<term>Glycosylation</term>
<term>Interactions hôte-parasite</term>
<term>Microscopie électronique à balayage</term>
<term>Peptides</term>
<term>Peptides antimicrobiens cationiques</term>
<term>Spectroscopie par résonance magnétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Yew species (Taxus spp.) throughout the world are hosts to hundreds, or perhaps thousands, of endophytic organisms. Most commonly, these organisms are fungi, living in a commensal or a symbiotic relationship with their host plant, so the plants exhibit little or no outward evidence that they are supporting these microorganisms. Little is known about any of the biochemical mechanisms that mediate the interactions between the yew host and its associated microbes. We feel that such information may not only contribute to our understanding of endophyte-tree biology, but also may provide novel pharmaceutical leads, because some of the compounds produced by these endophytes have demonstrated pharmacological activities.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Acremonium sp. was isolated as an endophytic fungus of the European yew, Taxus baccata. Entry of Acremonium sp. into the plant may proceed via invasion of natural openings such as stomata. The relationship between Acremonium sp. and T. baccata may be a symbiotic one, because no symptoms are seen when Taxus media p.v. Hicksii is inoculated with this fungus. In culture, the fungus makes leucinostatin A, a peptide with phytotoxic, anticancer and antifungal properties. Although this peptide causes necrotic symptoms in many non-host plants and other cell types, it causes no visible symptoms in the host plant. T. baccata and several other plants have a UDP glucose; leucinostatin A glucosyl transferase that catalyzes the production of leucinostatin A beta di-O-glucoside from leucinostatin A. This glucoside, also made by the fungus, has a lower bioactivity against plants, fungi and a breast cancer cell line, BT-20, than leucinostatin A.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Leucinostatin A may be one of several potentially toxic peptides produced by Acremonium sp. that contribute to the defense of the host, thereby preserving the fungus' own biological niche. The host plant is relatively immune to leucinostatin A because it has an enzyme which transfers two glycosyl residues to leucinostatin A, markedly reducing the peptide's bioactivity. Our results suggest that glucosylation reactions may play a more general role in plant defenses, especially against toxin-mediated disease development.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">9263641</PMID>
<DateCompleted>
<Year>1997</Year>
<Month>10</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>12</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1074-5521</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>4</Volume>
<Issue>7</Issue>
<PubDate>
<Year>1997</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Chemistry & biology</Title>
<ISOAbbreviation>Chem Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity.</ArticleTitle>
<Pagination>
<MedlinePgn>529-36</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Yew species (Taxus spp.) throughout the world are hosts to hundreds, or perhaps thousands, of endophytic organisms. Most commonly, these organisms are fungi, living in a commensal or a symbiotic relationship with their host plant, so the plants exhibit little or no outward evidence that they are supporting these microorganisms. Little is known about any of the biochemical mechanisms that mediate the interactions between the yew host and its associated microbes. We feel that such information may not only contribute to our understanding of endophyte-tree biology, but also may provide novel pharmaceutical leads, because some of the compounds produced by these endophytes have demonstrated pharmacological activities.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Acremonium sp. was isolated as an endophytic fungus of the European yew, Taxus baccata. Entry of Acremonium sp. into the plant may proceed via invasion of natural openings such as stomata. The relationship between Acremonium sp. and T. baccata may be a symbiotic one, because no symptoms are seen when Taxus media p.v. Hicksii is inoculated with this fungus. In culture, the fungus makes leucinostatin A, a peptide with phytotoxic, anticancer and antifungal properties. Although this peptide causes necrotic symptoms in many non-host plants and other cell types, it causes no visible symptoms in the host plant. T. baccata and several other plants have a UDP glucose; leucinostatin A glucosyl transferase that catalyzes the production of leucinostatin A beta di-O-glucoside from leucinostatin A. This glucoside, also made by the fungus, has a lower bioactivity against plants, fungi and a breast cancer cell line, BT-20, than leucinostatin A.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Leucinostatin A may be one of several potentially toxic peptides produced by Acremonium sp. that contribute to the defense of the host, thereby preserving the fungus' own biological niche. The host plant is relatively immune to leucinostatin A because it has an enzyme which transfers two glycosyl residues to leucinostatin A, markedly reducing the peptide's bioactivity. Our results suggest that glucosylation reactions may play a more general role in plant defenses, especially against toxin-mediated disease development.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Strobel</LastName>
<ForeName>G A</ForeName>
<Initials>GA</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Pathology, Montana State University, Bozeman 59717, USA. uplga@gemini.oscs.montana.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hess</LastName>
<ForeName>W M</ForeName>
<Initials>WM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA 58315</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Chem Biol</MedlineTA>
<NlmUniqueID>9500160</NlmUniqueID>
<ISSNLinking>1074-5521</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000900">Anti-Bacterial Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D023181">Antimicrobial Cationic Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005960">Glucosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010455">Peptides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>76600-38-9</RegistryNumber>
<NameOfSubstance UI="C008268">leucinostatin A</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000164" MajorTopicYN="N">Acremonium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000900" MajorTopicYN="N">Anti-Bacterial Agents</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023181" MajorTopicYN="N">Antimicrobial Cationic Peptides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005960" MajorTopicYN="N">Glucosides</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006031" MajorTopicYN="N">Glycosylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008855" MajorTopicYN="N">Microscopy, Electron, Scanning</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010455" MajorTopicYN="Y">Peptides</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1997</Year>
<Month>7</Month>
<Day>1</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1997</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1997</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">9263641</ArticleId>
<ArticleId IdType="pii">S1074-5521(97)90325-2</ArticleId>
<ArticleId IdType="doi">10.1016/s1074-5521(97)90325-2</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hess, W M" sort="Hess, W M" uniqKey="Hess W" first="W M" last="Hess">W M Hess</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Strobel, G A" sort="Strobel, G A" uniqKey="Strobel G" first="G A" last="Strobel">G A Strobel</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/TreeMicInterV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000288 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000288 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    TreeMicInterV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:9263641
   |texte=   Glucosylation of the peptide leucinostatin A, produced by an endophytic fungus of European yew, may protect the host from leucinostatin toxicity.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:9263641" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a TreeMicInterV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Thu Nov 19 16:52:21 2020. Site generation: Thu Nov 19 16:52:50 2020